On Convergence Factors for Series Summable by Norlund Means
نویسندگان
چکیده
منابع مشابه
Convergence Factors for Double Series Summable by Nörlund Means.
In a note' published in volume 21 of these PROCEEDINGS I gave necessary and sufficient conditions for convergence factors in simply infinite series summable by N6rlund means. The purpose of the present note is to furnish analogous results for double series. We are given a doubly infinite set of complex constants cij (i, j = 0, 1, 2, 3, .. .), where coo 0 0 and Zc,ix'y' is convergent for I x I <...
متن کاملOn Relationships between Norlund Means for Double Series1
where the s{j are the partial sums of a double series EM»./> which remain bounded for all (i, j). The necessary and sufficient conditions for regularity of Norlund means in the case of such double series have been given by C. N. Moore in Theorem II of Chapter II of his book4 entitled Summable series and convergence factors which will be subsequently referred to as S.S.C.F. In the case where the...
متن کاملIntegrals and Summable Trigonometric Series
is that of suitably defining a trigonometric integral with the property that, if the series (1.1) converges everywhere to a function ƒ(x), then f(x) is necessarily integrable and the coefficients, an and bn, given in the usual Fourier form. It is well known that a series may converge everywhere to a function which is not Lebesgue summable nor even Denjoy integrable (completely totalisable, [3])...
متن کاملOn absolute generalized Norlund summability of double orthogonal series
In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...
متن کاملSummable series and the Riemann rearrangement theorem
Let N be the set of positive integers. A function from N to a set is called a sequence. If X is a topological space and x ∈ X, a sequence a : N → X is said to converge to x if for every open neighborhood U of x there is some NU such that n ≥ NU implies that an ∈ U . If there is no x ∈ X for which a converges to x, we say that a diverges. Let a : N→ R. We define s(a) : N→ R by sn(a) = ∑n k=1 ak....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1935
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.21.5.263